。什么是质数?」
「啊,好的。质数就是……『只有1和自己本身能整除自己的数』吧,这是数学老师叫我们一定要记起来的定义。」蒂蒂点点头说。
「也就是说,你认为这个定义是正确的?」
『当正整数p只能被1与p整除时,p为质数』
「嗯,我觉得这是正确的。」
「不,这定义是错的。」
「咦?假如拿5当例子的话,只有1和5可以整除啊。」
「嗯,5是质数没错。但是照这个定义的话,1也会变成质数了。因为当p用1代入时,p只能被1与p整除这点是符合的,但是1并不包含在质数之内。最小的质数是2,将质数由小到大排列,会像下面的数列一样从2开始。」
2,3,5,7,11,13,17,19,……
我继续说下去:「所以前面的定义是错的,质数的定义应该如下面所写……」
『当正整数p只能被1与p整除时,p为质数,但1除外。」
「或是从一开始就定下条件。」
『p为大于1的整数,当正整数p只能被1与p整除时,p为质数。』
「条件用算式也可以。」
『整数p>1,当p只能被1与p整除时,p为质数。』
「1不是质数啊。的确,老师好像也是这样教的,我能懂学长写的定义了。但是……」
蒂蒂突然拾起头。
「我知道了,质数不包含1。不过我还是不能认同,为什么质数不能包含1呢?包含进去会有什么不合理的地方吗?我不懂质数不能包含1的rationale。」
「rationale?」
「就是正当的理由、原理的说明、理论的根据。」
喔~~这女孩也知道认同理由的重要性啊。
「……学长?」
「啊……抱歉。为什么质数不能包含1呢?很简单,是因为质因子分解的唯一性。」
「质因数分解的唯一性?唯一性是什么?」
「所谓质因数分解的唯一性就是指一正整数n的质因子分解只有一种。例如说24的质因子分解只有2×2×2×3一种。啊,在这里不考虑数字的排列顺序,像2×2×3×2或3×2×2×2之类,虽然顺序不同仍然视为同样的质因子分解。质因子分解的唯一性在数学里是相当重要的,为了要遵守这个性质,所以就定义1不能为质数。」
为了要遵守这个性质?因为这个原因就可以擅自定义吗?」
「可以的。虽然说擅自有点夸张……数学家会找出对构成数学世界有用的数学概念,然后将它命名,这就是定义。将概念清楚地规定下来,就能勉强算是定义了。但是,可以定义和这个定义能不能派上用场又是两回事。在你的定义里,质数包含1,会使质因子分解的唯一性消失。话说回来,你懂质因子分解的唯一性了吗?」
「唔,懂了……吧。」
「嗯~~为什么说『吧』?必须确定自己是否理解才行。」我特别强调了『自己』。
「要怎么确定自己是否理解了呢?」
「例如举个适当的例子来确定是否理解了。『举例是理解的试金石』。虽然举例并非定义,但是适当地举例也是一种很好的练习。」
『举例若质数包含1,则质因子分解的唯一性无法成立』
「原来是这样。假如质数包含1,则24的质因子分解,就会像这样有很多种……」
2×2×2×3
1×2×2×2×3
1×1×2×2×2×3
.
.
.
「是的。这就是质因子分解的唯一性无法成立的例子。」
我的话让蒂蒂松了一口气,
「但是与其说『很多种』,不如用『复数个』或『2个以上』的方式表现。这是因为……」
「……因为比较严密?」蒂蒂马上接下去。
「没错,『很多种』这种表达方式并不严密。几个以上算是很多?这样界线就很模糊。」
「学长……我似乎也要先整理一下我的脑袋才行了。关于『定义』、『举例』、『质数』、『质因子分解』、『唯一性』……还有严密的表达,在数学里用词也是很重要呢!」
「没错!你很聪明。在数学里语言是很重要的。要尽可能避免误会,所以数学才会使用严密的用语,而其中最严密的语言就是算式。」
「算式……」
「那么进入数学的语言——算式的话题吧。因为要用到黑板,我们到下面去。」
我走向大型教室的前方,蒂蒂则跟在后面,才刚走几步就听到一声」啊!」接着我的背后感受到一阵冲击。
「哇!」
「对……对不起。」
蒂蒂被楼梯绊倒,撞向我的背后,在两个人快要跌倒的时候,我总算站稳脚步,真危险。
2.5.2绝对值的定义
「……那么接下来,你知道绝对值吗?」我